3.133 \(\int \frac {x (A+B x^2)}{\sqrt {b x^2+c x^4}} \, dx\)

Optimal. Leaf size=66 \[ \frac {B \sqrt {b x^2+c x^4}}{2 c}-\frac {(b B-2 A c) \tanh ^{-1}\left (\frac {\sqrt {c} x^2}{\sqrt {b x^2+c x^4}}\right )}{2 c^{3/2}} \]

[Out]

-1/2*(-2*A*c+B*b)*arctanh(x^2*c^(1/2)/(c*x^4+b*x^2)^(1/2))/c^(3/2)+1/2*B*(c*x^4+b*x^2)^(1/2)/c

________________________________________________________________________________________

Rubi [A]  time = 0.12, antiderivative size = 66, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 24, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.167, Rules used = {2034, 640, 620, 206} \[ \frac {B \sqrt {b x^2+c x^4}}{2 c}-\frac {(b B-2 A c) \tanh ^{-1}\left (\frac {\sqrt {c} x^2}{\sqrt {b x^2+c x^4}}\right )}{2 c^{3/2}} \]

Antiderivative was successfully verified.

[In]

Int[(x*(A + B*x^2))/Sqrt[b*x^2 + c*x^4],x]

[Out]

(B*Sqrt[b*x^2 + c*x^4])/(2*c) - ((b*B - 2*A*c)*ArcTanh[(Sqrt[c]*x^2)/Sqrt[b*x^2 + c*x^4]])/(2*c^(3/2))

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 620

Int[1/Sqrt[(b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Dist[2, Subst[Int[1/(1 - c*x^2), x], x, x/Sqrt[b*x + c*x^2
]], x] /; FreeQ[{b, c}, x]

Rule 640

Int[((d_.) + (e_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(e*(a + b*x + c*x^2)^(p +
 1))/(2*c*(p + 1)), x] + Dist[(2*c*d - b*e)/(2*c), Int[(a + b*x + c*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, p}
, x] && NeQ[2*c*d - b*e, 0] && NeQ[p, -1]

Rule 2034

Int[(x_)^(m_.)*((b_.)*(x_)^(k_.) + (a_.)*(x_)^(j_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_.), x_Symbol] :> Dist[1/n
, Subst[Int[x^(Simplify[(m + 1)/n] - 1)*(a*x^Simplify[j/n] + b*x^Simplify[k/n])^p*(c + d*x)^q, x], x, x^n], x]
 /; FreeQ[{a, b, c, d, j, k, m, n, p, q}, x] &&  !IntegerQ[p] && NeQ[k, j] && IntegerQ[Simplify[j/n]] && Integ
erQ[Simplify[k/n]] && IntegerQ[Simplify[(m + 1)/n]] && NeQ[n^2, 1]

Rubi steps

\begin {align*} \int \frac {x \left (A+B x^2\right )}{\sqrt {b x^2+c x^4}} \, dx &=\frac {1}{2} \operatorname {Subst}\left (\int \frac {A+B x}{\sqrt {b x+c x^2}} \, dx,x,x^2\right )\\ &=\frac {B \sqrt {b x^2+c x^4}}{2 c}+\frac {(-b B+2 A c) \operatorname {Subst}\left (\int \frac {1}{\sqrt {b x+c x^2}} \, dx,x,x^2\right )}{4 c}\\ &=\frac {B \sqrt {b x^2+c x^4}}{2 c}+\frac {(-b B+2 A c) \operatorname {Subst}\left (\int \frac {1}{1-c x^2} \, dx,x,\frac {x^2}{\sqrt {b x^2+c x^4}}\right )}{2 c}\\ &=\frac {B \sqrt {b x^2+c x^4}}{2 c}-\frac {(b B-2 A c) \tanh ^{-1}\left (\frac {\sqrt {c} x^2}{\sqrt {b x^2+c x^4}}\right )}{2 c^{3/2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.05, size = 81, normalized size = 1.23 \[ \frac {x \left (B \sqrt {c} x \left (b+c x^2\right )-\sqrt {b+c x^2} (b B-2 A c) \tanh ^{-1}\left (\frac {\sqrt {c} x}{\sqrt {b+c x^2}}\right )\right )}{2 c^{3/2} \sqrt {x^2 \left (b+c x^2\right )}} \]

Antiderivative was successfully verified.

[In]

Integrate[(x*(A + B*x^2))/Sqrt[b*x^2 + c*x^4],x]

[Out]

(x*(B*Sqrt[c]*x*(b + c*x^2) - (b*B - 2*A*c)*Sqrt[b + c*x^2]*ArcTanh[(Sqrt[c]*x)/Sqrt[b + c*x^2]]))/(2*c^(3/2)*
Sqrt[x^2*(b + c*x^2)])

________________________________________________________________________________________

fricas [A]  time = 0.66, size = 131, normalized size = 1.98 \[ \left [\frac {2 \, \sqrt {c x^{4} + b x^{2}} B c - {\left (B b - 2 \, A c\right )} \sqrt {c} \log \left (-2 \, c x^{2} - b - 2 \, \sqrt {c x^{4} + b x^{2}} \sqrt {c}\right )}{4 \, c^{2}}, \frac {\sqrt {c x^{4} + b x^{2}} B c + {\left (B b - 2 \, A c\right )} \sqrt {-c} \arctan \left (\frac {\sqrt {c x^{4} + b x^{2}} \sqrt {-c}}{c x^{2} + b}\right )}{2 \, c^{2}}\right ] \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(B*x^2+A)/(c*x^4+b*x^2)^(1/2),x, algorithm="fricas")

[Out]

[1/4*(2*sqrt(c*x^4 + b*x^2)*B*c - (B*b - 2*A*c)*sqrt(c)*log(-2*c*x^2 - b - 2*sqrt(c*x^4 + b*x^2)*sqrt(c)))/c^2
, 1/2*(sqrt(c*x^4 + b*x^2)*B*c + (B*b - 2*A*c)*sqrt(-c)*arctan(sqrt(c*x^4 + b*x^2)*sqrt(-c)/(c*x^2 + b)))/c^2]

________________________________________________________________________________________

giac [A]  time = 0.21, size = 67, normalized size = 1.02 \[ \frac {\sqrt {c x^{4} + b x^{2}} B}{2 \, c} + \frac {{\left (B b - 2 \, A c\right )} \log \left ({\left | -2 \, {\left (\sqrt {c} x^{2} - \sqrt {c x^{4} + b x^{2}}\right )} \sqrt {c} - b \right |}\right )}{4 \, c^{\frac {3}{2}}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(B*x^2+A)/(c*x^4+b*x^2)^(1/2),x, algorithm="giac")

[Out]

1/2*sqrt(c*x^4 + b*x^2)*B/c + 1/4*(B*b - 2*A*c)*log(abs(-2*(sqrt(c)*x^2 - sqrt(c*x^4 + b*x^2))*sqrt(c) - b))/c
^(3/2)

________________________________________________________________________________________

maple [A]  time = 0.06, size = 88, normalized size = 1.33 \[ \frac {\sqrt {c \,x^{2}+b}\, \left (2 A \,c^{2} \ln \left (\sqrt {c}\, x +\sqrt {c \,x^{2}+b}\right )-B b c \ln \left (\sqrt {c}\, x +\sqrt {c \,x^{2}+b}\right )+\sqrt {c \,x^{2}+b}\, B \,c^{\frac {3}{2}} x \right ) x}{2 \sqrt {c \,x^{4}+b \,x^{2}}\, c^{\frac {5}{2}}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x*(B*x^2+A)/(c*x^4+b*x^2)^(1/2),x)

[Out]

1/2*x*(c*x^2+b)^(1/2)*(B*c^(3/2)*(c*x^2+b)^(1/2)*x+2*A*ln(c^(1/2)*x+(c*x^2+b)^(1/2))*c^2-B*ln(c^(1/2)*x+(c*x^2
+b)^(1/2))*b*c)/(c*x^4+b*x^2)^(1/2)/c^(5/2)

________________________________________________________________________________________

maxima [A]  time = 1.44, size = 88, normalized size = 1.33 \[ -\frac {1}{4} \, B {\left (\frac {b \log \left (2 \, c x^{2} + b + 2 \, \sqrt {c x^{4} + b x^{2}} \sqrt {c}\right )}{c^{\frac {3}{2}}} - \frac {2 \, \sqrt {c x^{4} + b x^{2}}}{c}\right )} + \frac {A \log \left (2 \, c x^{2} + b + 2 \, \sqrt {c x^{4} + b x^{2}} \sqrt {c}\right )}{2 \, \sqrt {c}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(B*x^2+A)/(c*x^4+b*x^2)^(1/2),x, algorithm="maxima")

[Out]

-1/4*B*(b*log(2*c*x^2 + b + 2*sqrt(c*x^4 + b*x^2)*sqrt(c))/c^(3/2) - 2*sqrt(c*x^4 + b*x^2)/c) + 1/2*A*log(2*c*
x^2 + b + 2*sqrt(c*x^4 + b*x^2)*sqrt(c))/sqrt(c)

________________________________________________________________________________________

mupad [B]  time = 0.81, size = 89, normalized size = 1.35 \[ \frac {B\,\sqrt {c\,x^4+b\,x^2}}{2\,c}+\frac {A\,\ln \left (\frac {c\,x^2+\frac {b}{2}}{\sqrt {c}}+\sqrt {c\,x^4+b\,x^2}\right )}{2\,\sqrt {c}}-\frac {B\,b\,\ln \left (\frac {c\,x^2+\frac {b}{2}}{\sqrt {c}}+\sqrt {c\,x^4+b\,x^2}\right )}{4\,c^{3/2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((x*(A + B*x^2))/(b*x^2 + c*x^4)^(1/2),x)

[Out]

(B*(b*x^2 + c*x^4)^(1/2))/(2*c) + (A*log((b/2 + c*x^2)/c^(1/2) + (b*x^2 + c*x^4)^(1/2)))/(2*c^(1/2)) - (B*b*lo
g((b/2 + c*x^2)/c^(1/2) + (b*x^2 + c*x^4)^(1/2)))/(4*c^(3/2))

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {x \left (A + B x^{2}\right )}{\sqrt {x^{2} \left (b + c x^{2}\right )}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(B*x**2+A)/(c*x**4+b*x**2)**(1/2),x)

[Out]

Integral(x*(A + B*x**2)/sqrt(x**2*(b + c*x**2)), x)

________________________________________________________________________________________